Nov 7, 2006

Share |

Paradojas sobre el infinito

El concepto matemático de infinito, al ser contrario a la intuición, ha generado muchas paradojas desde que fue formulado.

Paradoja de Galileo: a pesar de que no todos los números son números cuadrados, no hay más números que números cuadrados.

La paradoja de Galileo es una demostración de una de las sorprendentes propiedades de los conjuntos infinitos. El carácter paradójico se da por poner en entredicho el principio de que el todo es mayor que sus partes.
En su último trabajo científico, Dos nuevas ciencias, Galileo Galilei hizo dos afirmaciones aparentemente contradictorias acerca de los números enteros positivos. Primero, algunos números tienen la propiedad de ser un cuadrado perfecto (esto es, el cuadrado de un entero, desde ahora llamado simplemente cuadrado), mientras que otros no la tienen. Por ello, el conjunto de todos los números, incluyendo tanto a los cuadrados como a los no cuadrados, tiene que ser mayor que el conjunto de los cuadrados. Sin embargo, por cada cuadrado hay exactamente un número que es su raíz cuadrada, y por cada número hay exactamente un cuadrado. Por lo tanto, no puede haber más de un tipo que de otro. Este es uno de los primeros usos, aunque no el primero, de demostración a través de una función biyectiva.
Galileo llegó a la conclusión de que los conceptos de menor, igual y mayor sólo se aplicaban a conjuntos finitos, y no tenían sentido aplicados a conjuntos infinitos. En el siglo XIX, Cantor, usando los mismos métodos, demostró que a pesar de que el resultado de Galileo era correcto si se aplicaba a los números enteros, o incluso a los racionales, la conclusión general no era cierta: algunos conjuntos infinitos son mayores que otros, en el sentido en el que no se pueden relacionar en una correspondencia uno-a-uno.

Paradoja del hotel infinito: un hotel de infinitas habitaciones puede aceptar más huéspedes, incluso si está lleno.

Hotel Infinito es una metáfora inventada por el matemático alemán David Hilbert, para explicar las paradojas relacionadas con el infinito descubiertas por el también matemático Georg Cantor, de una manera sencilla.
Esta metáfora describe por medio de un hotel de habitaciones infinitas, cuatro paradojas de las encontradas por Georg Cantor. Numerosas personas han creado historias completas sobre la metáfora de David Hilbert ([1], [2], [3]).

El hotel más grande del mundo
Dos grandes hoteleros que querían construir el hotel más grande del mundo se reunieron a dialogar sobre el asunto y comenzaron por el primer y más obvio tema a discutir: cuántas habitaciones tendría.
"—¿Qué te parece si construimos un hotel con 1000 habitaciones?
—No, porque si alguien construyera uno de 2000 habitaciones, nuestro hotel ya no sería tan grande. Mejor hagámoslo de 10 000.
—Pero podría ser que alguien construyera uno de 20 000 y volveríamos a quedarnos con un hotel pequeño. Construyamos un hotel con 1 000 000 de habitaciones, ése sería un hotel grande.
—Y qué tal si alguien construyera uno con..." [4]
Como siempre podría llegar a haber un hotel más grande, llegaron a la conclusión de que era necesario hacer un hotel con habitaciones infinitas de manera que ningún otro hotel del mundo pudiera superar su tamaño.

Infinito más uno
Sin embargo en un hotel de infinitas habitaciones no todo es color de rosa, tan pronto se abrieron las puertas de este hotel la gente comenzó a abarrotarlo y pronto se encontraron con que el hotel de habitaciones infititas se encontraba lleno de infinitos huéspedes. En este momento surgió la primera paradoja, así que se tomó como medida que los huéspedes siempre tendrían habitación asegurada pero con el acuerdo previo de que tendrían que cambiar de habitación cada vez que se les pidiera.
Fue entonces cuando llegó un hombre al hotel pero éste se encontraba lleno, por supuesto esto no preocupó al cliente pues en el Hotel Infinito se aseguraba que todos tendrían habitación, el hombre pidió su habitación y el recepcionista, consciente de que no habría ningún problema, tomó un micrófono por el que avisó a todos los huéspedes que por favor revisaran el número de su habitación, le sumaran uno y se cambiaran a ese número de habitación, de esta manera el nuevo huésped pudo dormir tranquilamente en la habitación número 1. Pero, ¿qué pasó entonces con el huésped que se encontraba en la última habitación? Sencillamente no hay última habitación.

Dos infinitos
Estando el hotel lleno de infinitos huéspedes, llegó un representante de una agencia de viajes con el corazón en la mano, su problema era que tenía una excursión de infinitos turistas que necesitarían hospedarse esa noche en el hotel. Se trataba por lo tanto de hacer sitio a infinitos huéspedes en un hotel con infinitas habitaciones, todas ellas ocupadas en aquellos momentos. Pero el recepcionista no tuvo ningún problema en aceptar a los nuevos turistas. Cogió el micro y pidió a todos los huéspedes que se mudaran a la habitación correspondiente al resultado de multiplicar por 2 el número de su habitación actual. De esa forma todos los huéspedes se mudaron a una habitación par, y todas las habitaciones impares quedaron libres. Como hay infinitos números impares, los infinitos turistas pudieron alojarse sin más problema.

Infinito número de infinitos
Estando el hotel lleno con infinitos huéspedes, llegó otro representante de la agencia de viajes aún más preocupado que el primero y avisó al primero el gran problema que había ocurrido, ahora la agencia tenía un infinito número de excursiones con un infinito número de turistas cada una. "¡Qué enorme problema se presenta ahora!", pensaban los representantes de la agencia de viajes, ¿cómo podrían hospedar a un número infinito de infinitos turistas?
El recepcionista ni siquiera se inmutó y tranquilamente tomó el micrófono y se comunicó solamente con las habitaciones cuyo número fuera primo o alguna potencia de éstos, les pidió elevaran el número 2 al número de la habitación (n) en la que encontraban (2n) y se cambiaran a esa habitación.
Entonces asignó a cada una de las excursiones un número primo (mayor de 2), a cada uno de los turistas de cada una de las excursiones un número impar, de manera que la habitación de cada uno de los turistas, se calculaba tomando el número primo de su excursión (p) y elevarlo al número que les tocó dentro de su excursión (t) lo que da pt.
Existiendo un número infinito de números primos y un número infinito de números impares, fácilmente se logró hospedar a un número infinito de infinitos huéspedes dentro de un hotel que sólo tiene un número infinito de habitaciones.

Conjunto de Cantor: cómo quitar elementos de un conjunto y que siga teniendo el mismo tamaño.

El conjunto de Cantor es, además de una curiosidad matemática, una paradoja, en el sentido usual, es decir que contradice una intuición universal relativa a tamaño de objetos geométricos.
Se construye así:
El primer paso es tomar el intervalo [0, 1].
El segundo paso es quitarle su tercio interior, es decir el intervalo abierto (1/3; 2/3).
El tercero es quitar a los dos segmentos restantes sus respectivos tercios interiores, es decir los intervalos abiertos (1/9; 2/9) y (7/9; 8/9).
Los pasos siguientes son idénticos: quitar el tercio de todos los intervalos que quedan. El proceso no tiene fin.

El conjunto de Cantor es el conjunto de los escasos puntos que quedan al final: 0 y 1, 1/3 y 2/3, 1/9, 2/9, 7/9 y 8/9, 1/27..., bueno, escasos no lo son, porque hay una infinidad de puntos : los 1/3n están todos incluidos, con n describiendo los naturales.Sin embargo, el conjunto es pequeño cuando se considera su longitud: el intervalo inicial [0,1] mide 1, y a cada paso, se le quita un tercio, lo que hace que su longitud se multiplique por 2/3. la sucesión geométrica un = (2/3)n tiende hacia cero, Por lo tanto el conjunto de Cantor mide cero. Y es lógico, porque no contiene ningún intervalo, los hemos destruido sistemáticamente.La paradoja es la siguiente:El conjunto de Cantor está en biyección con el segmento [0, 1]: tiene tantos elementos como él.
Si se considera la escritura en base tres de los números, se nota que, al quitar siempre el segundo tercio de todos los segmentos, se suprime exactamente los números que tienen un 1 en su escritura trienal: el intervalo (1/3; 2/3) corresponde a los números que empiezan por 0,1 (menos el 1/3 que también se puede escribir 0, 02222222222..... en base tres); el intervalo (1/9;2/9) corresponde a los números que empiezan por 0,01, el (7/9;8/9) por 0,21 y así succesivamente.
La biyección se construye así: a cada número escrito con sólo ceros y doses se le hace corresponder el número en base dos obtenido remplazando todos sus doses por unos. Por ejemplo, 0,2002 en base tres (que vale 2/3 + 2/81 = 56/81) tiene como imagen 0,1001 en base dos (que vale 1/2 + 1/16 = 9/16).Se obtiene así todos los números en base dos que empiezan por 0,... y que tienen ceros o/y unos después de la coma: ¡es el intervalo [0,1] entero!

Cuerno de Gabriel (o Trompeta de Torricelli): ¿cómo puede ser necesaria una superficie infinita para contener un volumen finito?

El Cuerno de Gabriel (también llamado Trompeta de Torricelli) es una figura ideada por Evangelista Torricelli que tiene la característica de poseer una superficie infinita pero un volumen finito.

Esta paradoja aparente ha sido descrita de modo informal señalando que sería necesaria una cantidad infinita de pintura para cubrir la superficie interior, mientras que sería posible rellenar toda la figura con una cantidad finita de pintura y así cubrir esa superficie. La solución de la paradoja es que la afirmación de que un área infinita requiere una cantidad finita de pintura presupone que una capa de pintura tiene un grosor constante. Ésto no se cumple en el interior del cuerno, ya que la mayor parte de la longitud de la figura no es accesible a la pintura, especialmente cuando su diámetro es menor que el de una molécula de pintura. Si se considera una pintura sin grosor, sería necesaria una cantidad infinita de tiempo para que ésta llegase hasta el «final» del cuerno.
En otras palabras, llegaría un momento en el que el espesor de la trompeta sería más pequeño que una molécula de pintura con lo que, digamos, una gota de pintura cubriría el resto de la superficie de la trompeta (aunque fuera infinito). Así, que la superficie de la trompeta sea infinita no implicaría que la cantidad de pintura tenga que ser infinita.

Paradojas de Zenón: unas paradojas falsas que tratan de utilizar el infinito para demostrar que el movimiento no puede existir.

Las paradojas de Zenón son una serie de paradojas o aporías, ideadas por Zenón de Elea, para demostrar que la razón no siempre tiene la respuesta. Racionalmente, una persona no puede cruzar un estadio porque primero llegará a la mitad de éste, luego a la mitad de la mitad, luego a la mitad de la mitad de la mitad y así eternamente hasta el infinito. Teóricamente, pues, racionalmente, una persona no puede cruzar un estadio, en cambio los sentidos nos dicen que sí es posible.
Pertenecen a la categoría de paradojas falsídicas, esto es, que no sólo alcanzan un resultado que aparenta ser falso, sino que además lo es. Ésto se debe a una falacia en el razonamiento, producido por la falta de conocimientos sobre el concepto de infinito en la época en la que fueron formuladas.

Aquiles y la tortuga
Aquiles el guerrero decide salir a competir en una carrera contra una tortuga. Ya que corre mucho más rápido que ella, y seguro de sus posibilidades, le da una ventaja inicial. Al darse la salida, Aquiles recorre en poco tiempo la distancia que los separaba inicialmente, pero al llegar allí descubre que la tortuga ya no está, sino que ha avanzado, más lentamente, un pequeño trecho. Sin desanimarse, sigue corriendo, pero al llegar de nuevo donde estaba la tortuga, esta ha avanzado un poco más. De este modo, Aquiles no ganará la carrera, ya que la tortuga estará siempre por delante de él.
Actualmente, se conoce que Aquiles realmente alcanzará a la tortuga, ya que una suma de infinitos términos puede tener un resultado finito. Los tiempos en los que Aquiles recorre la distancia que le separa del punto anterior en el que se encontraba la tortuga son cada vez más y más pequeños, y su suma da un resultado finito, que es el momento en que alcanzará a la tortuga.

El lanzamiento de una piedra contra un árbol
Esta paradoja es una variante de la anterior.
Zenón está a ocho metros de un árbol. Llegado un momento, lanza una piedra, tratando de dar al árbol. La piedra, para llegar al objetivo, tiene que recorrer antes la primera mitad de la distancia que le separa de él, es decir, los primeros cuatro metros, y tardara un tiempo (finito) en hacerlo. Una vez llegue a estar a cuatro metros del árbol, deberá recorrer los cuatro metros que le quedan, y para ello debe recorrer primero la mitad de esa distancia. Pero cuando esté a dos metros del árbol, tardará tiempo en recorrer el primer metro, y luego el primer medio metro restante, y luego el primer cuarto de metro... De este modo, la piedra nunca llegará al árbol.
Es posible utilizar este razonamiento, de forma análoga, para «demostrar» que la piedra nunca llegará a salir de la mano de Zenón.
Al igual que en la paradoja de Aquiles y la tortuga, es cierto que la cantidad de distancias recorridas, (y tiempos invertidos en hacerlo) es infinita, pero su suma es finita y por tanto la piedra llegará al árbol.

La paradoja de la flecha
En esta paradoja, se lanza una flecha. En cada momento en el tiempo, la flecha está en una posición específica, y si ese momento es lo suficientemente pequeño, la flecha no tiene tiempo para moverse, por lo que está en reposo durante ese instante. Ahora bien, durante los siguientes periodos de tiempo, la flecha también estará en reposo por el mismo motivo. De modo que la flecha está siempre en reposo: el movimiento es imposible.
Un modo de resolverlo es observar que, a pesar de que en cada instante la flecha se percibe como en reposo, estar en reposo es un término relativo. No se puede juzgar, observando sólo un instante cualquiera, si un objeto está en reposo. En lugar de ello, es necesario compararlo con otros instantes adyacentes. Así, si lo comparamos con otros instantes, la flecha está en distinta posición de la que estaba antes y en la que estará después. Por tanto, la flecha se está moviendo.


Obtenido de http://es.wikipedia.org/

No comments:

Related Posts Plugin for WordPress, Blogger...